Properties

Label 2-277970-1.1-c1-0-11
Degree $2$
Conductor $277970$
Sign $1$
Analytic cond. $2219.60$
Root an. cond. $47.1126$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 5-s − 2·6-s − 7-s + 8-s + 9-s − 10-s + 11-s − 2·12-s + 4·13-s − 14-s + 2·15-s + 16-s + 18-s − 20-s + 2·21-s + 22-s − 4·23-s − 2·24-s + 25-s + 4·26-s + 4·27-s − 28-s + 6·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.447·5-s − 0.816·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.577·12-s + 1.10·13-s − 0.267·14-s + 0.516·15-s + 1/4·16-s + 0.235·18-s − 0.223·20-s + 0.436·21-s + 0.213·22-s − 0.834·23-s − 0.408·24-s + 1/5·25-s + 0.784·26-s + 0.769·27-s − 0.188·28-s + 1.11·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 277970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 277970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(277970\)    =    \(2 \cdot 5 \cdot 7 \cdot 11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2219.60\)
Root analytic conductor: \(47.1126\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 277970,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.994668865\)
\(L(\frac12)\) \(\approx\) \(1.994668865\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 - T \)
19 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81207380052812, −12.07408849161161, −11.91848183994140, −11.49303640241506, −10.95889332673736, −10.81002555958597, −9.969802944614287, −9.889514319404926, −8.962555637683363, −8.490577570370128, −8.139527537913782, −7.404212440837617, −6.922737188120771, −6.429693451654101, −6.144493621687490, −5.634293984536976, −5.227027252098447, −4.553368369183975, −4.179823372879667, −3.598596995753034, −3.165020670411760, −2.472326403066069, −1.694905033107491, −1.036523577689552, −0.4125197161580008, 0.4125197161580008, 1.036523577689552, 1.694905033107491, 2.472326403066069, 3.165020670411760, 3.598596995753034, 4.179823372879667, 4.553368369183975, 5.227027252098447, 5.634293984536976, 6.144493621687490, 6.429693451654101, 6.922737188120771, 7.404212440837617, 8.139527537913782, 8.490577570370128, 8.962555637683363, 9.889514319404926, 9.969802944614287, 10.81002555958597, 10.95889332673736, 11.49303640241506, 11.91848183994140, 12.07408849161161, 12.81207380052812

Graph of the $Z$-function along the critical line