Properties

Label 2-235200-1.1-c1-0-113
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 7·13-s − 5·17-s − 2·19-s − 3·23-s − 27-s − 3·29-s + 9·31-s + 8·37-s + 7·39-s + 3·41-s + 43-s + 8·47-s + 5·51-s − 3·53-s + 2·57-s + 7·59-s − 61-s − 12·67-s + 3·69-s + 12·71-s + 4·73-s + 12·79-s + 81-s − 3·83-s + 3·87-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.94·13-s − 1.21·17-s − 0.458·19-s − 0.625·23-s − 0.192·27-s − 0.557·29-s + 1.61·31-s + 1.31·37-s + 1.12·39-s + 0.468·41-s + 0.152·43-s + 1.16·47-s + 0.700·51-s − 0.412·53-s + 0.264·57-s + 0.911·59-s − 0.128·61-s − 1.46·67-s + 0.361·69-s + 1.42·71-s + 0.468·73-s + 1.35·79-s + 1/9·81-s − 0.329·83-s + 0.321·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.165739167\)
\(L(\frac12)\) \(\approx\) \(1.165739167\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74256233739251, −12.51426678441730, −11.87425692566948, −11.65061979117699, −11.08693033574003, −10.57183159180012, −10.14433036072380, −9.702307235742278, −9.269159936602568, −8.771111312842198, −8.094485795447186, −7.604151577084440, −7.306146069193391, −6.570393057106760, −6.322160814465306, −5.749895010053456, −5.078920860363772, −4.646878298347539, −4.335229303170569, −3.717146470764434, −2.810788486783087, −2.310367397986301, −2.031821163654479, −0.9298603082859630, −0.3630736253559480, 0.3630736253559480, 0.9298603082859630, 2.031821163654479, 2.310367397986301, 2.810788486783087, 3.717146470764434, 4.335229303170569, 4.646878298347539, 5.078920860363772, 5.749895010053456, 6.322160814465306, 6.570393057106760, 7.306146069193391, 7.604151577084440, 8.094485795447186, 8.771111312842198, 9.269159936602568, 9.702307235742278, 10.14433036072380, 10.57183159180012, 11.08693033574003, 11.65061979117699, 11.87425692566948, 12.51426678441730, 12.74256233739251

Graph of the $Z$-function along the critical line