Properties

Label 2-218400-1.1-c1-0-60
Degree $2$
Conductor $218400$
Sign $1$
Analytic cond. $1743.93$
Root an. cond. $41.7604$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 2·11-s + 13-s + 4·17-s + 8·19-s − 21-s + 27-s + 2·29-s − 10·31-s + 2·33-s − 2·37-s + 39-s + 12·41-s + 6·43-s − 4·47-s + 49-s + 4·51-s + 12·53-s + 8·57-s − 2·61-s − 63-s + 8·67-s − 2·73-s − 2·77-s − 8·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.603·11-s + 0.277·13-s + 0.970·17-s + 1.83·19-s − 0.218·21-s + 0.192·27-s + 0.371·29-s − 1.79·31-s + 0.348·33-s − 0.328·37-s + 0.160·39-s + 1.87·41-s + 0.914·43-s − 0.583·47-s + 1/7·49-s + 0.560·51-s + 1.64·53-s + 1.05·57-s − 0.256·61-s − 0.125·63-s + 0.977·67-s − 0.234·73-s − 0.227·77-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 218400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 218400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(218400\)    =    \(2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(1743.93\)
Root analytic conductor: \(41.7604\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 218400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.734486792\)
\(L(\frac12)\) \(\approx\) \(4.734486792\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06104367390690, −12.49579884783689, −12.12366379745740, −11.59605383755286, −11.20322512503798, −10.53056347035441, −10.14553582448917, −9.556922189468718, −9.199238832830233, −8.963879532049244, −8.202809593303258, −7.685872727178018, −7.333050912431092, −6.949664580118180, −6.208957258097089, −5.669911813166746, −5.373753939373351, −4.636103857083057, −3.915021007124353, −3.602236149079326, −3.105194873606447, −2.521189262614281, −1.803466972945169, −1.108666146894651, −0.6626937722762362, 0.6626937722762362, 1.108666146894651, 1.803466972945169, 2.521189262614281, 3.105194873606447, 3.602236149079326, 3.915021007124353, 4.636103857083057, 5.373753939373351, 5.669911813166746, 6.208957258097089, 6.949664580118180, 7.333050912431092, 7.685872727178018, 8.202809593303258, 8.963879532049244, 9.199238832830233, 9.556922189468718, 10.14553582448917, 10.53056347035441, 11.20322512503798, 11.59605383755286, 12.12366379745740, 12.49579884783689, 13.06104367390690

Graph of the $Z$-function along the critical line