Properties

Label 2-214200-1.1-c1-0-116
Degree $2$
Conductor $214200$
Sign $-1$
Analytic cond. $1710.39$
Root an. cond. $41.3569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 4·11-s + 6·13-s + 17-s + 4·19-s − 4·23-s − 2·29-s − 4·31-s + 6·37-s − 6·41-s − 8·43-s + 49-s − 2·53-s − 6·61-s − 8·67-s + 16·71-s + 10·73-s + 4·77-s − 4·79-s − 4·83-s − 10·89-s + 6·91-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.377·7-s + 1.20·11-s + 1.66·13-s + 0.242·17-s + 0.917·19-s − 0.834·23-s − 0.371·29-s − 0.718·31-s + 0.986·37-s − 0.937·41-s − 1.21·43-s + 1/7·49-s − 0.274·53-s − 0.768·61-s − 0.977·67-s + 1.89·71-s + 1.17·73-s + 0.455·77-s − 0.450·79-s − 0.439·83-s − 1.05·89-s + 0.628·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(214200\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1710.39\)
Root analytic conductor: \(41.3569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 214200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32596430536268, −12.80548439056031, −12.09646219531935, −11.89276986763694, −11.28578085863096, −11.07774374327752, −10.50678054495849, −9.831826769095831, −9.492174975678200, −9.005795752893360, −8.483241993537978, −8.072867383870493, −7.626069782356439, −6.920314590112930, −6.494908101670295, −6.063896698987905, −5.517002044653871, −5.044594857490244, −4.286208285216161, −3.787757229186829, −3.522090644359540, −2.827791326986118, −1.925632862791520, −1.409045461856119, −1.051428841745390, 0, 1.051428841745390, 1.409045461856119, 1.925632862791520, 2.827791326986118, 3.522090644359540, 3.787757229186829, 4.286208285216161, 5.044594857490244, 5.517002044653871, 6.063896698987905, 6.494908101670295, 6.920314590112930, 7.626069782356439, 8.072867383870493, 8.483241993537978, 9.005795752893360, 9.492174975678200, 9.831826769095831, 10.50678054495849, 11.07774374327752, 11.28578085863096, 11.89276986763694, 12.09646219531935, 12.80548439056031, 13.32596430536268

Graph of the $Z$-function along the critical line