Properties

Label 214200.et
Number of curves $4$
Conductor $214200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("et1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 214200.et have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 214200.et do not have complex multiplication.

Modular form 214200.2.a.et

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 4 q^{11} + 6 q^{13} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 214200.et

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
214200.et1 214200bj4 \([0, 0, 0, -176421675, -901936584250]\) \(26031669916232627138/1534698375\) \(35801443692000000000\) \([2]\) \(21233664\) \(3.2163\)  
214200.et2 214200bj3 \([0, 0, 0, -18543675, 7425701750]\) \(30229685362358498/16472900390625\) \(384279820312500000000000\) \([2]\) \(21233664\) \(3.2163\)  
214200.et3 214200bj2 \([0, 0, 0, -11046675, -14038209250]\) \(12781179439594276/97578140625\) \(1138151432250000000000\) \([2, 2]\) \(10616832\) \(2.8697\)  
214200.et4 214200bj1 \([0, 0, 0, -242175, -500170750]\) \(-538671647824/36750606375\) \(-107164768189500000000\) \([4]\) \(5308416\) \(2.5232\) \(\Gamma_0(N)\)-optimal