Properties

Label 2-19800-1.1-c1-0-19
Degree $2$
Conductor $19800$
Sign $1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 11-s − 2·13-s + 6·17-s + 4·19-s − 8·23-s + 10·29-s + 10·37-s + 6·41-s + 8·43-s + 9·49-s − 2·53-s − 12·59-s − 2·61-s + 12·67-s − 8·71-s + 2·73-s + 4·77-s − 8·79-s − 8·83-s + 6·89-s − 8·91-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.51·7-s + 0.301·11-s − 0.554·13-s + 1.45·17-s + 0.917·19-s − 1.66·23-s + 1.85·29-s + 1.64·37-s + 0.937·41-s + 1.21·43-s + 9/7·49-s − 0.274·53-s − 1.56·59-s − 0.256·61-s + 1.46·67-s − 0.949·71-s + 0.234·73-s + 0.455·77-s − 0.900·79-s − 0.878·83-s + 0.635·89-s − 0.838·91-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.351188413\)
\(L(\frac12)\) \(\approx\) \(3.351188413\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.80377713409004, −14.97921988320144, −14.41960732344779, −14.08188054083379, −13.91525037234118, −12.74218394898609, −12.32399360072503, −11.72174819086475, −11.48692311731525, −10.66651724691761, −10.09298891940682, −9.637434475996831, −8.917243822678712, −8.143065016708774, −7.706978795729485, −7.506056579416856, −6.363972996584638, −5.836615896929979, −5.184459910824133, −4.529801699838735, −4.062322796221709, −3.040572476857060, −2.369423488694551, −1.434715535612849, −0.8425964472235441, 0.8425964472235441, 1.434715535612849, 2.369423488694551, 3.040572476857060, 4.062322796221709, 4.529801699838735, 5.184459910824133, 5.836615896929979, 6.363972996584638, 7.506056579416856, 7.706978795729485, 8.143065016708774, 8.917243822678712, 9.637434475996831, 10.09298891940682, 10.66651724691761, 11.48692311731525, 11.72174819086475, 12.32399360072503, 12.74218394898609, 13.91525037234118, 14.08188054083379, 14.41960732344779, 14.97921988320144, 15.80377713409004

Graph of the $Z$-function along the critical line