Properties

Label 2-19536-1.1-c1-0-17
Degree $2$
Conductor $19536$
Sign $1$
Analytic cond. $155.995$
Root an. cond. $12.4898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 4·7-s + 9-s + 11-s + 4·13-s + 2·15-s + 4·17-s − 2·19-s + 4·21-s − 4·23-s − 25-s + 27-s + 4·29-s + 33-s + 8·35-s + 37-s + 4·39-s − 2·41-s − 6·43-s + 2·45-s + 8·47-s + 9·49-s + 4·51-s + 2·53-s + 2·55-s − 2·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s + 0.516·15-s + 0.970·17-s − 0.458·19-s + 0.872·21-s − 0.834·23-s − 1/5·25-s + 0.192·27-s + 0.742·29-s + 0.174·33-s + 1.35·35-s + 0.164·37-s + 0.640·39-s − 0.312·41-s − 0.914·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s + 0.560·51-s + 0.274·53-s + 0.269·55-s − 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19536\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(155.995\)
Root analytic conductor: \(12.4898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19536,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.176192045\)
\(L(\frac12)\) \(\approx\) \(5.176192045\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
37 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.53370248346666, −15.05241965196753, −14.46128212132581, −14.07670722446387, −13.64691490880862, −13.23429857677970, −12.26579078579839, −11.95420902771785, −11.18343647994095, −10.69212452593158, −10.07230489587931, −9.603388602418153, −8.773163661096347, −8.392987198593270, −7.948693842465693, −7.242947713499192, −6.433658623007606, −5.816249960581098, −5.314288761369826, −4.470264418295071, −3.937942302646532, −3.107855682041938, −2.158063030544045, −1.662561348544483, −1.001675148588481, 1.001675148588481, 1.662561348544483, 2.158063030544045, 3.107855682041938, 3.937942302646532, 4.470264418295071, 5.314288761369826, 5.816249960581098, 6.433658623007606, 7.242947713499192, 7.948693842465693, 8.392987198593270, 8.773163661096347, 9.603388602418153, 10.07230489587931, 10.69212452593158, 11.18343647994095, 11.95420902771785, 12.26579078579839, 13.23429857677970, 13.64691490880862, 14.07670722446387, 14.46128212132581, 15.05241965196753, 15.53370248346666

Graph of the $Z$-function along the critical line