Properties

Label 2-180e2-1.1-c1-0-20
Degree $2$
Conductor $32400$
Sign $1$
Analytic cond. $258.715$
Root an. cond. $16.0846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·7-s + 13-s − 6·17-s − 5·19-s − 9·23-s + 4·31-s + 10·37-s − 3·41-s + 8·43-s − 3·47-s + 18·49-s − 3·53-s − 9·59-s + 8·61-s − 4·67-s − 6·71-s − 2·73-s − 2·79-s + 6·83-s + 6·89-s + 5·91-s + 16·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.88·7-s + 0.277·13-s − 1.45·17-s − 1.14·19-s − 1.87·23-s + 0.718·31-s + 1.64·37-s − 0.468·41-s + 1.21·43-s − 0.437·47-s + 18/7·49-s − 0.412·53-s − 1.17·59-s + 1.02·61-s − 0.488·67-s − 0.712·71-s − 0.234·73-s − 0.225·79-s + 0.658·83-s + 0.635·89-s + 0.524·91-s + 1.62·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32400\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(258.715\)
Root analytic conductor: \(16.0846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.480926764\)
\(L(\frac12)\) \(\approx\) \(2.480926764\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.81950884212750, −14.64244192365455, −14.05842188242099, −13.49504376481548, −13.06121087915139, −12.28170160915583, −11.72128191416915, −11.39730952552731, −10.71833914926088, −10.52544260044876, −9.651480369399073, −8.926968918120101, −8.525977708076715, −7.846757969169000, −7.759700819746638, −6.685364847387752, −6.208219406016186, −5.610656199769833, −4.761195618254557, −4.312444527209488, −4.044958212009499, −2.749388311334862, −2.065975597797337, −1.674448938359543, −0.5856060584573518, 0.5856060584573518, 1.674448938359543, 2.065975597797337, 2.749388311334862, 4.044958212009499, 4.312444527209488, 4.761195618254557, 5.610656199769833, 6.208219406016186, 6.685364847387752, 7.759700819746638, 7.846757969169000, 8.525977708076715, 8.926968918120101, 9.651480369399073, 10.52544260044876, 10.71833914926088, 11.39730952552731, 11.72128191416915, 12.28170160915583, 13.06121087915139, 13.49504376481548, 14.05842188242099, 14.64244192365455, 14.81950884212750

Graph of the $Z$-function along the critical line