# Properties

 Label 1.7.af Base Field $\F_{7}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{7}$ Dimension: $1$ L-polynomial: $1 - 5 x + 7 x^{2}$ Frobenius angles: $\pm0.106147807505$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-3})$$ Galois group: $C_2$ Jacobians: 1

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 3 39 324 2379 16833 117936 824799 5769075 40366188 282508239

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 3 39 324 2379 16833 117936 824799 5769075 40366188 282508239

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3})$$.
All geometric endomorphisms are defined over $\F_{7}$.

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 1.7.f $2$ 1.49.al 1.7.b $3$ 1.343.au 1.7.e $3$ 1.343.au
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.7.f $2$ 1.49.al 1.7.b $3$ 1.343.au 1.7.e $3$ 1.343.au 1.7.ae $6$ (not in LMFDB) 1.7.ab $6$ (not in LMFDB)