Properties

Label 2-180336-1.1-c1-0-17
Degree $2$
Conductor $180336$
Sign $1$
Analytic cond. $1439.99$
Root an. cond. $37.9472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s + 9-s − 13-s − 4·15-s − 4·19-s − 4·23-s + 11·25-s − 27-s + 8·29-s − 8·31-s + 4·37-s + 39-s − 4·41-s − 4·43-s + 4·45-s − 8·47-s − 7·49-s + 10·53-s + 4·57-s + 4·59-s − 8·61-s − 4·65-s + 4·67-s + 4·69-s + 4·73-s − 11·75-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s + 1/3·9-s − 0.277·13-s − 1.03·15-s − 0.917·19-s − 0.834·23-s + 11/5·25-s − 0.192·27-s + 1.48·29-s − 1.43·31-s + 0.657·37-s + 0.160·39-s − 0.624·41-s − 0.609·43-s + 0.596·45-s − 1.16·47-s − 49-s + 1.37·53-s + 0.529·57-s + 0.520·59-s − 1.02·61-s − 0.496·65-s + 0.488·67-s + 0.481·69-s + 0.468·73-s − 1.27·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180336\)    =    \(2^{4} \cdot 3 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1439.99\)
Root analytic conductor: \(37.9472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 180336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.351080619\)
\(L(\frac12)\) \(\approx\) \(2.351080619\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14061846741757, −12.81460108561313, −12.18789346139164, −11.91230853328901, −11.09530957969219, −10.74369061122415, −10.31154645285915, −9.849014685975095, −9.518793802032787, −9.048391459760046, −8.278277622220743, −8.104494280904162, −7.085184556063390, −6.677102537372564, −6.411500008501786, −5.723619281125673, −5.504337605992260, −4.834735896982708, −4.458127984805305, −3.652484706653076, −2.949581378529930, −2.286239403489488, −1.861487440569847, −1.325199890470012, −0.4416496316687089, 0.4416496316687089, 1.325199890470012, 1.861487440569847, 2.286239403489488, 2.949581378529930, 3.652484706653076, 4.458127984805305, 4.834735896982708, 5.504337605992260, 5.723619281125673, 6.411500008501786, 6.677102537372564, 7.085184556063390, 8.104494280904162, 8.278277622220743, 9.048391459760046, 9.518793802032787, 9.849014685975095, 10.31154645285915, 10.74369061122415, 11.09530957969219, 11.91230853328901, 12.18789346139164, 12.81460108561313, 13.14061846741757

Graph of the $Z$-function along the critical line