Properties

Label 2-178752-1.1-c1-0-12
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 2·11-s − 4·13-s + 4·17-s − 19-s + 2·23-s − 5·25-s − 27-s + 2·29-s − 2·33-s − 6·37-s + 4·39-s + 6·41-s − 8·43-s − 4·51-s + 2·53-s + 57-s + 4·59-s − 10·61-s − 14·67-s − 2·69-s − 12·71-s − 10·73-s + 5·75-s + 10·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 0.603·11-s − 1.10·13-s + 0.970·17-s − 0.229·19-s + 0.417·23-s − 25-s − 0.192·27-s + 0.371·29-s − 0.348·33-s − 0.986·37-s + 0.640·39-s + 0.937·41-s − 1.21·43-s − 0.560·51-s + 0.274·53-s + 0.132·57-s + 0.520·59-s − 1.28·61-s − 1.71·67-s − 0.240·69-s − 1.42·71-s − 1.17·73-s + 0.577·75-s + 1.12·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7709056223\)
\(L(\frac12)\) \(\approx\) \(0.7709056223\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05007579906227, −12.64320618617304, −12.07245689869825, −11.77797451324020, −11.55642881141761, −10.64193395803451, −10.38447484107296, −9.957119765095429, −9.373638910826884, −9.012245765539740, −8.377319797023123, −7.654768713683317, −7.486324556801241, −6.823027450816283, −6.377007525841563, −5.775323647939712, −5.369702836776396, −4.792864431378548, −4.299845826601888, −3.737340386285760, −3.058586600345013, −2.529618532910838, −1.641797236166663, −1.278443712194209, −0.2659176290454117, 0.2659176290454117, 1.278443712194209, 1.641797236166663, 2.529618532910838, 3.058586600345013, 3.737340386285760, 4.299845826601888, 4.792864431378548, 5.369702836776396, 5.775323647939712, 6.377007525841563, 6.823027450816283, 7.486324556801241, 7.654768713683317, 8.377319797023123, 9.012245765539740, 9.373638910826884, 9.957119765095429, 10.38447484107296, 10.64193395803451, 11.55642881141761, 11.77797451324020, 12.07245689869825, 12.64320618617304, 13.05007579906227

Graph of the $Z$-function along the critical line