Properties

Label 2-167310-1.1-c1-0-127
Degree $2$
Conductor $167310$
Sign $1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 4·7-s − 8-s + 10-s − 11-s + 4·14-s + 16-s − 6·17-s − 4·19-s − 20-s + 22-s + 4·23-s + 25-s − 4·28-s + 2·29-s − 8·31-s − 32-s + 6·34-s + 4·35-s − 2·37-s + 4·38-s + 40-s + 6·41-s − 4·43-s − 44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 1.51·7-s − 0.353·8-s + 0.316·10-s − 0.301·11-s + 1.06·14-s + 1/4·16-s − 1.45·17-s − 0.917·19-s − 0.223·20-s + 0.213·22-s + 0.834·23-s + 1/5·25-s − 0.755·28-s + 0.371·29-s − 1.43·31-s − 0.176·32-s + 1.02·34-s + 0.676·35-s − 0.328·37-s + 0.648·38-s + 0.158·40-s + 0.937·41-s − 0.609·43-s − 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54252391534842, −13.04361319770487, −12.80604206560321, −12.38345967588334, −11.73254130680207, −11.22614870932043, −10.74378791048194, −10.43915321460795, −9.899835784828027, −9.294096395919230, −8.835671215192523, −8.742580440558628, −7.954347983505373, −7.299705980755430, −6.925692073645408, −6.651537683133136, −5.933123267897951, −5.581273133661887, −4.695467058900806, −4.134102332760740, −3.664904363145391, −2.907044626596108, −2.581712095377446, −1.888783370272288, −0.9900551203252667, 0, 0, 0.9900551203252667, 1.888783370272288, 2.581712095377446, 2.907044626596108, 3.664904363145391, 4.134102332760740, 4.695467058900806, 5.581273133661887, 5.933123267897951, 6.651537683133136, 6.925692073645408, 7.299705980755430, 7.954347983505373, 8.742580440558628, 8.835671215192523, 9.294096395919230, 9.899835784828027, 10.43915321460795, 10.74378791048194, 11.22614870932043, 11.73254130680207, 12.38345967588334, 12.80604206560321, 13.04361319770487, 13.54252391534842

Graph of the $Z$-function along the critical line