Properties

Label 2-162240-1.1-c1-0-105
Degree $2$
Conductor $162240$
Sign $1$
Analytic cond. $1295.49$
Root an. cond. $35.9929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s + 3·11-s − 15-s + 6·17-s − 2·19-s − 2·21-s + 3·23-s + 25-s − 27-s − 3·29-s + 5·31-s − 3·33-s + 2·35-s + 7·37-s + 6·41-s + 43-s + 45-s − 3·47-s − 3·49-s − 6·51-s + 6·53-s + 3·55-s + 2·57-s + 9·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.904·11-s − 0.258·15-s + 1.45·17-s − 0.458·19-s − 0.436·21-s + 0.625·23-s + 1/5·25-s − 0.192·27-s − 0.557·29-s + 0.898·31-s − 0.522·33-s + 0.338·35-s + 1.15·37-s + 0.937·41-s + 0.152·43-s + 0.149·45-s − 0.437·47-s − 3/7·49-s − 0.840·51-s + 0.824·53-s + 0.404·55-s + 0.264·57-s + 1.17·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1295.49\)
Root analytic conductor: \(35.9929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.812823947\)
\(L(\frac12)\) \(\approx\) \(3.812823947\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07900954031109, −12.88801810358090, −12.16393389441440, −11.86248056614573, −11.36981658821181, −10.99150761950332, −10.41020397490686, −9.970085072877248, −9.463312469034305, −9.069613738007468, −8.371030024032695, −7.971890780314157, −7.380607590952398, −6.937364999265252, −6.248923869470124, −5.927451250560138, −5.409829158250302, −4.819601073357155, −4.379860673174151, −3.780468389684228, −3.127573056840262, −2.421037259838949, −1.723809712584065, −1.131841090873799, −0.6796604722161250, 0.6796604722161250, 1.131841090873799, 1.723809712584065, 2.421037259838949, 3.127573056840262, 3.780468389684228, 4.379860673174151, 4.819601073357155, 5.409829158250302, 5.927451250560138, 6.248923869470124, 6.937364999265252, 7.380607590952398, 7.971890780314157, 8.371030024032695, 9.069613738007468, 9.463312469034305, 9.970085072877248, 10.41020397490686, 10.99150761950332, 11.36981658821181, 11.86248056614573, 12.16393389441440, 12.88801810358090, 13.07900954031109

Graph of the $Z$-function along the critical line