Properties

Label 2-14976-1.1-c1-0-35
Degree $2$
Conductor $14976$
Sign $1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·11-s − 13-s − 4·17-s − 6·19-s − 5·25-s − 6·29-s + 4·31-s − 6·37-s + 6·41-s + 4·43-s − 8·47-s + 9·49-s + 6·53-s − 12·59-s − 10·61-s + 2·67-s − 12·71-s − 10·73-s + 16·77-s − 10·79-s − 4·83-s − 10·89-s + 4·91-s + 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.20·11-s − 0.277·13-s − 0.970·17-s − 1.37·19-s − 25-s − 1.11·29-s + 0.718·31-s − 0.986·37-s + 0.937·41-s + 0.609·43-s − 1.16·47-s + 9/7·49-s + 0.824·53-s − 1.56·59-s − 1.28·61-s + 0.244·67-s − 1.42·71-s − 1.17·73-s + 1.82·77-s − 1.12·79-s − 0.439·83-s − 1.05·89-s + 0.419·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.53976848447123, −15.91394736880060, −15.60996781513513, −15.14094665265531, −14.42283529139380, −13.57891794856781, −13.19306522892756, −12.86461031282568, −12.28432933014841, −11.57539715790001, −10.76440263713947, −10.43090146084773, −9.816255279127684, −9.204065635246666, −8.693030456745556, −7.888330243609261, −7.317245230039509, −6.630171823741182, −6.058983807675200, −5.557342752941783, −4.547138812883162, −4.051835284654735, −3.098963866834441, −2.586790462252968, −1.776473230524683, 0, 0, 1.776473230524683, 2.586790462252968, 3.098963866834441, 4.051835284654735, 4.547138812883162, 5.557342752941783, 6.058983807675200, 6.630171823741182, 7.317245230039509, 7.888330243609261, 8.693030456745556, 9.204065635246666, 9.816255279127684, 10.43090146084773, 10.76440263713947, 11.57539715790001, 12.28432933014841, 12.86461031282568, 13.19306522892756, 13.57891794856781, 14.42283529139380, 15.14094665265531, 15.60996781513513, 15.91394736880060, 16.53976848447123

Graph of the $Z$-function along the critical line