Properties

Label 2-148720-1.1-c1-0-52
Degree $2$
Conductor $148720$
Sign $1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s + 11-s − 2·15-s + 17-s − 7·19-s − 8·21-s + 4·23-s + 25-s − 4·27-s − 4·29-s − 8·31-s + 2·33-s + 4·35-s − 11·37-s + 5·41-s + 11·43-s − 45-s − 11·47-s + 9·49-s + 2·51-s + 6·53-s − 55-s − 14·57-s − 12·59-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s − 0.516·15-s + 0.242·17-s − 1.60·19-s − 1.74·21-s + 0.834·23-s + 1/5·25-s − 0.769·27-s − 0.742·29-s − 1.43·31-s + 0.348·33-s + 0.676·35-s − 1.80·37-s + 0.780·41-s + 1.67·43-s − 0.149·45-s − 1.60·47-s + 9/7·49-s + 0.280·51-s + 0.824·53-s − 0.134·55-s − 1.85·57-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85142169338500, −13.26458878389841, −12.89093835129232, −12.57726316531922, −12.16452570411847, −11.32344035408321, −10.95423624895272, −10.41344340335872, −9.903727250470795, −9.267447319557903, −8.990325757354418, −8.725938308906383, −8.074038478478722, −7.343096892085233, −7.208605789759468, −6.551507143717603, −5.923951664585513, −5.594142064533732, −4.595181063363161, −4.095706711658229, −3.587708980348864, −3.147260244631439, −2.734708937995099, −1.998681727658090, −1.372418174660617, 0, 0, 1.372418174660617, 1.998681727658090, 2.734708937995099, 3.147260244631439, 3.587708980348864, 4.095706711658229, 4.595181063363161, 5.594142064533732, 5.923951664585513, 6.551507143717603, 7.208605789759468, 7.343096892085233, 8.074038478478722, 8.725938308906383, 8.990325757354418, 9.267447319557903, 9.903727250470795, 10.41344340335872, 10.95423624895272, 11.32344035408321, 12.16452570411847, 12.57726316531922, 12.89093835129232, 13.26458878389841, 13.85142169338500

Graph of the $Z$-function along the critical line