Properties

Label 2-14784-1.1-c1-0-0
Degree $2$
Conductor $14784$
Sign $1$
Analytic cond. $118.050$
Root an. cond. $10.8651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 11-s − 6·13-s + 4·17-s − 6·19-s + 21-s − 4·23-s − 5·25-s − 27-s − 6·29-s − 2·31-s − 33-s − 10·37-s + 6·39-s − 4·41-s − 8·43-s − 6·47-s + 49-s − 4·51-s + 10·53-s + 6·57-s + 2·61-s − 63-s + 4·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.301·11-s − 1.66·13-s + 0.970·17-s − 1.37·19-s + 0.218·21-s − 0.834·23-s − 25-s − 0.192·27-s − 1.11·29-s − 0.359·31-s − 0.174·33-s − 1.64·37-s + 0.960·39-s − 0.624·41-s − 1.21·43-s − 0.875·47-s + 1/7·49-s − 0.560·51-s + 1.37·53-s + 0.794·57-s + 0.256·61-s − 0.125·63-s + 0.488·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14784\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(118.050\)
Root analytic conductor: \(10.8651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14784,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4566950393\)
\(L(\frac12)\) \(\approx\) \(0.4566950393\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.20799473839888, −15.43469689394395, −15.03126825889454, −14.46034134519295, −13.90414079854072, −13.14228736080014, −12.62074551028505, −12.06401886257965, −11.79146050138636, −10.96888528137834, −10.29897569790357, −9.811285036008934, −9.498546477156712, −8.459840587176474, −8.005011225436344, −7.061629736916618, −6.890046108398232, −5.950457595297236, −5.420439295479824, −4.821479151603292, −3.939799815321395, −3.438578277210884, −2.253023657286273, −1.752309568929667, −0.2894266947289624, 0.2894266947289624, 1.752309568929667, 2.253023657286273, 3.438578277210884, 3.939799815321395, 4.821479151603292, 5.420439295479824, 5.950457595297236, 6.890046108398232, 7.061629736916618, 8.005011225436344, 8.459840587176474, 9.498546477156712, 9.811285036008934, 10.29897569790357, 10.96888528137834, 11.79146050138636, 12.06401886257965, 12.62074551028505, 13.14228736080014, 13.90414079854072, 14.46034134519295, 15.03126825889454, 15.43469689394395, 16.20799473839888

Graph of the $Z$-function along the critical line