Properties

Label 2-1470-1.1-c1-0-11
Degree $2$
Conductor $1470$
Sign $1$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 8-s + 9-s + 10-s − 12-s − 2·13-s − 15-s + 16-s + 6·17-s + 18-s + 4·19-s + 20-s − 24-s + 25-s − 2·26-s − 27-s − 6·29-s − 30-s + 4·31-s + 32-s + 6·34-s + 36-s + 2·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.554·13-s − 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.204·24-s + 1/5·25-s − 0.392·26-s − 0.192·27-s − 1.11·29-s − 0.182·30-s + 0.718·31-s + 0.176·32-s + 1.02·34-s + 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.485460825\)
\(L(\frac12)\) \(\approx\) \(2.485460825\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.888069578415763464107097842748, −8.731498057007750352966650002167, −7.51387576011083292544985077305, −7.10964669364204788106378776803, −5.78759423294267265835869539718, −5.60234946102839433104390934262, −4.57559453297699244994264276723, −3.54557244775390244119212987579, −2.47224864249386374740461957491, −1.12161915937701051533126457273, 1.12161915937701051533126457273, 2.47224864249386374740461957491, 3.54557244775390244119212987579, 4.57559453297699244994264276723, 5.60234946102839433104390934262, 5.78759423294267265835869539718, 7.10964669364204788106378776803, 7.51387576011083292544985077305, 8.731498057007750352966650002167, 9.888069578415763464107097842748

Graph of the $Z$-function along the critical line