Properties

Label 2-13650-1.1-c1-0-1
Degree $2$
Conductor $13650$
Sign $1$
Analytic cond. $108.995$
Root an. cond. $10.4401$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s − 12-s + 13-s + 14-s + 16-s − 2·17-s − 18-s + 4·19-s + 21-s − 8·23-s + 24-s − 26-s − 27-s − 28-s − 6·29-s + 4·31-s − 32-s + 2·34-s + 36-s + 6·37-s − 4·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.917·19-s + 0.218·21-s − 1.66·23-s + 0.204·24-s − 0.196·26-s − 0.192·27-s − 0.188·28-s − 1.11·29-s + 0.718·31-s − 0.176·32-s + 0.342·34-s + 1/6·36-s + 0.986·37-s − 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(108.995\)
Root analytic conductor: \(10.4401\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7299021550\)
\(L(\frac12)\) \(\approx\) \(0.7299021550\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.30886177330289, −15.84985063939070, −15.24491439799068, −14.66208232591728, −13.86354446439775, −13.30986816408311, −12.79193244947310, −11.93915076413848, −11.64356722670253, −11.12650860298209, −10.31250454008218, −9.882943687823848, −9.466418496396353, −8.610135411600606, −8.066132244455712, −7.432733910443019, −6.725647607235549, −6.209319759702457, −5.604349497345899, −4.844275137885860, −3.944291005506533, −3.289154535766956, −2.272620366839011, −1.505175780038152, −0.4441531790969209, 0.4441531790969209, 1.505175780038152, 2.272620366839011, 3.289154535766956, 3.944291005506533, 4.844275137885860, 5.604349497345899, 6.209319759702457, 6.725647607235549, 7.432733910443019, 8.066132244455712, 8.610135411600606, 9.466418496396353, 9.882943687823848, 10.31250454008218, 11.12650860298209, 11.64356722670253, 11.93915076413848, 12.79193244947310, 13.30986816408311, 13.86354446439775, 14.66208232591728, 15.24491439799068, 15.84985063939070, 16.30886177330289

Graph of the $Z$-function along the critical line