| L(s)  = 1  |     − 3-s     − 5-s     + 2·7-s     + 9-s     − 11-s     − 4·13-s     + 15-s         − 4·19-s     − 2·21-s     + 4·23-s     + 25-s     − 27-s     + 6·29-s     − 8·31-s     + 33-s     − 2·35-s     − 10·37-s     + 4·39-s     − 6·41-s     + 6·43-s     − 45-s     + 12·47-s     − 3·49-s         − 10·53-s     + 55-s     + 4·57-s     + 4·59-s  + ⋯ | 
 
| L(s)  = 1  |     − 0.577·3-s     − 0.447·5-s     + 0.755·7-s     + 1/3·9-s     − 0.301·11-s     − 1.10·13-s     + 0.258·15-s         − 0.917·19-s     − 0.436·21-s     + 0.834·23-s     + 1/5·25-s     − 0.192·27-s     + 1.11·29-s     − 1.43·31-s     + 0.174·33-s     − 0.338·35-s     − 1.64·37-s     + 0.640·39-s     − 0.937·41-s     + 0.914·43-s     − 0.149·45-s     + 1.75·47-s     − 3/7·49-s         − 1.37·53-s     + 0.134·55-s     + 0.529·57-s     + 0.520·59-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 + T \)  |    | 
 | 5 |  \( 1 + T \)  |    | 
 | 11 |  \( 1 + T \)  |    | 
| good | 7 |  \( 1 - 2 T + p T^{2} \)  |  1.7.ac  | 
 | 13 |  \( 1 + 4 T + p T^{2} \)  |  1.13.e  | 
 | 17 |  \( 1 + p T^{2} \)  |  1.17.a  | 
 | 19 |  \( 1 + 4 T + p T^{2} \)  |  1.19.e  | 
 | 23 |  \( 1 - 4 T + p T^{2} \)  |  1.23.ae  | 
 | 29 |  \( 1 - 6 T + p T^{2} \)  |  1.29.ag  | 
 | 31 |  \( 1 + 8 T + p T^{2} \)  |  1.31.i  | 
 | 37 |  \( 1 + 10 T + p T^{2} \)  |  1.37.k  | 
 | 41 |  \( 1 + 6 T + p T^{2} \)  |  1.41.g  | 
 | 43 |  \( 1 - 6 T + p T^{2} \)  |  1.43.ag  | 
 | 47 |  \( 1 - 12 T + p T^{2} \)  |  1.47.am  | 
 | 53 |  \( 1 + 10 T + p T^{2} \)  |  1.53.k  | 
 | 59 |  \( 1 - 4 T + p T^{2} \)  |  1.59.ae  | 
 | 61 |  \( 1 + 14 T + p T^{2} \)  |  1.61.o  | 
 | 67 |  \( 1 + 8 T + p T^{2} \)  |  1.67.i  | 
 | 71 |  \( 1 + 8 T + p T^{2} \)  |  1.71.i  | 
 | 73 |  \( 1 + 4 T + p T^{2} \)  |  1.73.e  | 
 | 79 |  \( 1 + p T^{2} \)  |  1.79.a  | 
 | 83 |  \( 1 + 14 T + p T^{2} \)  |  1.83.o  | 
 | 89 |  \( 1 + 18 T + p T^{2} \)  |  1.89.s  | 
 | 97 |  \( 1 + 10 T + p T^{2} \)  |  1.97.k  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.149215312603438154480798402805, −8.414011022248695458785888547369, −7.45098145857996322190789972479, −6.94974736336500332494092260994, −5.75891029347428624411602345438, −4.92159153746683048184790581727, −4.31096231431885129665914358508, −2.95423971009364245363909960671, −1.67024237556351595312355981484, 0, 
1.67024237556351595312355981484, 2.95423971009364245363909960671, 4.31096231431885129665914358508, 4.92159153746683048184790581727, 5.75891029347428624411602345438, 6.94974736336500332494092260994, 7.45098145857996322190789972479, 8.414011022248695458785888547369, 9.149215312603438154480798402805