Properties

Label 2-1320-1.1-c1-0-14
Degree $2$
Conductor $1320$
Sign $-1$
Analytic cond. $10.5402$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2·7-s + 9-s − 11-s − 4·13-s + 15-s − 4·19-s − 2·21-s + 4·23-s + 25-s − 27-s + 6·29-s − 8·31-s + 33-s − 2·35-s − 10·37-s + 4·39-s − 6·41-s + 6·43-s − 45-s + 12·47-s − 3·49-s − 10·53-s + 55-s + 4·57-s + 4·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s + 0.258·15-s − 0.917·19-s − 0.436·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.174·33-s − 0.338·35-s − 1.64·37-s + 0.640·39-s − 0.937·41-s + 0.914·43-s − 0.149·45-s + 1.75·47-s − 3/7·49-s − 1.37·53-s + 0.134·55-s + 0.529·57-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(10.5402\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.149215312603438154480798402805, −8.414011022248695458785888547369, −7.45098145857996322190789972479, −6.94974736336500332494092260994, −5.75891029347428624411602345438, −4.92159153746683048184790581727, −4.31096231431885129665914358508, −2.95423971009364245363909960671, −1.67024237556351595312355981484, 0, 1.67024237556351595312355981484, 2.95423971009364245363909960671, 4.31096231431885129665914358508, 4.92159153746683048184790581727, 5.75891029347428624411602345438, 6.94974736336500332494092260994, 7.45098145857996322190789972479, 8.414011022248695458785888547369, 9.149215312603438154480798402805

Graph of the $Z$-function along the critical line