Properties

Label 2-124800-1.1-c1-0-118
Degree $2$
Conductor $124800$
Sign $-1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 2·11-s + 13-s + 4·17-s − 4·19-s − 4·23-s + 27-s − 8·31-s + 2·33-s + 2·37-s + 39-s + 10·41-s + 4·43-s − 6·47-s − 7·49-s + 4·51-s − 6·53-s − 4·57-s + 14·59-s − 10·61-s − 4·67-s − 4·69-s + 8·71-s + 8·73-s − 4·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.603·11-s + 0.277·13-s + 0.970·17-s − 0.917·19-s − 0.834·23-s + 0.192·27-s − 1.43·31-s + 0.348·33-s + 0.328·37-s + 0.160·39-s + 1.56·41-s + 0.609·43-s − 0.875·47-s − 49-s + 0.560·51-s − 0.824·53-s − 0.529·57-s + 1.82·59-s − 1.28·61-s − 0.488·67-s − 0.481·69-s + 0.949·71-s + 0.936·73-s − 0.450·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90038775589189, −13.21765937980840, −12.79213373803427, −12.47058488228847, −11.88553763721686, −11.31794694908273, −10.85186642810764, −10.40600542743860, −9.672550287165395, −9.458941930920868, −8.922627384943832, −8.328582735211383, −7.865296562866127, −7.523945470996350, −6.778338540621514, −6.318213017122941, −5.817837607839294, −5.218782154106537, −4.508499757137145, −3.928000690807664, −3.609523427022375, −2.897367024653551, −2.215957495048094, −1.650628811682512, −0.9835572104669278, 0, 0.9835572104669278, 1.650628811682512, 2.215957495048094, 2.897367024653551, 3.609523427022375, 3.928000690807664, 4.508499757137145, 5.218782154106537, 5.817837607839294, 6.318213017122941, 6.778338540621514, 7.523945470996350, 7.865296562866127, 8.328582735211383, 8.922627384943832, 9.458941930920868, 9.672550287165395, 10.40600542743860, 10.85186642810764, 11.31794694908273, 11.88553763721686, 12.47058488228847, 12.79213373803427, 13.21765937980840, 13.90038775589189

Graph of the $Z$-function along the critical line