Properties

Label 2-122694-1.1-c1-0-21
Degree $2$
Conductor $122694$
Sign $1$
Analytic cond. $979.716$
Root an. cond. $31.3004$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 2·5-s − 6-s − 2·7-s − 8-s + 9-s − 2·10-s + 12-s + 2·14-s + 2·15-s + 16-s − 2·17-s − 18-s + 6·19-s + 2·20-s − 2·21-s − 4·23-s − 24-s − 25-s + 27-s − 2·28-s + 10·29-s − 2·30-s + 10·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.288·12-s + 0.534·14-s + 0.516·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 1.37·19-s + 0.447·20-s − 0.436·21-s − 0.834·23-s − 0.204·24-s − 1/5·25-s + 0.192·27-s − 0.377·28-s + 1.85·29-s − 0.365·30-s + 1.79·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122694\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(979.716\)
Root analytic conductor: \(31.3004\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 122694,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.445807482\)
\(L(\frac12)\) \(\approx\) \(2.445807482\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64192722758062, −13.30130750404792, −12.37655741247685, −12.14491069403626, −11.75317597661709, −10.92273353584705, −10.33518046916626, −9.988971361333766, −9.783539077087777, −9.143713314988308, −8.747715540829970, −8.207475287610878, −7.742140850770861, −7.048738524014543, −6.644912784482792, −6.154485688724699, −5.690553469650790, −4.917867732279939, −4.400750977635713, −3.502773282818392, −3.049511128616273, −2.550587998505590, −1.901240648219038, −1.272269351775662, −0.5250148889220195, 0.5250148889220195, 1.272269351775662, 1.901240648219038, 2.550587998505590, 3.049511128616273, 3.502773282818392, 4.400750977635713, 4.917867732279939, 5.690553469650790, 6.154485688724699, 6.644912784482792, 7.048738524014543, 7.742140850770861, 8.207475287610878, 8.747715540829970, 9.143713314988308, 9.783539077087777, 9.988971361333766, 10.33518046916626, 10.92273353584705, 11.75317597661709, 12.14491069403626, 12.37655741247685, 13.30130750404792, 13.64192722758062

Graph of the $Z$-function along the critical line