Properties

Label 2-121275-1.1-c1-0-107
Degree $2$
Conductor $121275$
Sign $-1$
Analytic cond. $968.385$
Root an. cond. $31.1188$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 11-s + 3·13-s − 4·16-s − 6·19-s − 2·22-s − 3·23-s − 6·26-s + 3·29-s + 8·32-s − 2·37-s + 12·38-s + 3·41-s + 43-s + 2·44-s + 6·46-s − 47-s + 6·52-s + 53-s − 6·58-s − 6·59-s − 4·61-s − 8·64-s − 8·67-s + 8·71-s − 10·73-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.301·11-s + 0.832·13-s − 16-s − 1.37·19-s − 0.426·22-s − 0.625·23-s − 1.17·26-s + 0.557·29-s + 1.41·32-s − 0.328·37-s + 1.94·38-s + 0.468·41-s + 0.152·43-s + 0.301·44-s + 0.884·46-s − 0.145·47-s + 0.832·52-s + 0.137·53-s − 0.787·58-s − 0.781·59-s − 0.512·61-s − 64-s − 0.977·67-s + 0.949·71-s − 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121275\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(968.385\)
Root analytic conductor: \(31.1188\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.88568923890727, −13.21407849262685, −12.89418650352833, −12.17604082430049, −11.73497233047112, −11.18972924718218, −10.71912871587299, −10.31988520217184, −10.00247979487886, −9.146953123143982, −8.972382110593871, −8.552842765649689, −7.847377670998678, −7.719794156069373, −6.873903972367098, −6.411150571515992, −6.091922853548752, −5.289441447133890, −4.470267142505765, −4.185971995804013, −3.421027376329679, −2.659896184657409, −1.966845695038652, −1.492933258005265, −0.7450747460918425, 0, 0.7450747460918425, 1.492933258005265, 1.966845695038652, 2.659896184657409, 3.421027376329679, 4.185971995804013, 4.470267142505765, 5.289441447133890, 6.091922853548752, 6.411150571515992, 6.873903972367098, 7.719794156069373, 7.847377670998678, 8.552842765649689, 8.972382110593871, 9.146953123143982, 10.00247979487886, 10.31988520217184, 10.71912871587299, 11.18972924718218, 11.73497233047112, 12.17604082430049, 12.89418650352833, 13.21407849262685, 13.88568923890727

Graph of the $Z$-function along the critical line