Properties

Label 2-121275-1.1-c1-0-102
Degree $2$
Conductor $121275$
Sign $-1$
Analytic cond. $968.385$
Root an. cond. $31.1188$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 11-s + 5·13-s + 4·16-s − 6·17-s − 2·19-s − 3·23-s − 9·29-s + 4·31-s − 2·37-s + 9·41-s − 11·43-s − 2·44-s − 3·47-s − 10·52-s − 3·53-s − 8·61-s − 8·64-s − 8·67-s + 12·68-s + 6·71-s + 14·73-s + 4·76-s − 10·79-s + 12·83-s + 18·89-s + 6·92-s + ⋯
L(s)  = 1  − 4-s + 0.301·11-s + 1.38·13-s + 16-s − 1.45·17-s − 0.458·19-s − 0.625·23-s − 1.67·29-s + 0.718·31-s − 0.328·37-s + 1.40·41-s − 1.67·43-s − 0.301·44-s − 0.437·47-s − 1.38·52-s − 0.412·53-s − 1.02·61-s − 64-s − 0.977·67-s + 1.45·68-s + 0.712·71-s + 1.63·73-s + 0.458·76-s − 1.12·79-s + 1.31·83-s + 1.90·89-s + 0.625·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121275\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(968.385\)
Root analytic conductor: \(31.1188\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66102467059513, −13.34761429312491, −13.00061066951716, −12.50606269212545, −11.79781525190163, −11.40547880705358, −10.77999144795198, −10.54252188266615, −9.771955104507336, −9.310570173689319, −8.877352634682839, −8.568027767282288, −7.914989360738793, −7.572443776528111, −6.578351926728436, −6.343214645460221, −5.832749982810460, −5.096260950080874, −4.631890911515905, −4.004257289380808, −3.709271354467166, −3.065576916555283, −2.077870227854911, −1.621078759079481, −0.7304049016532751, 0, 0.7304049016532751, 1.621078759079481, 2.077870227854911, 3.065576916555283, 3.709271354467166, 4.004257289380808, 4.631890911515905, 5.096260950080874, 5.832749982810460, 6.343214645460221, 6.578351926728436, 7.572443776528111, 7.914989360738793, 8.568027767282288, 8.877352634682839, 9.310570173689319, 9.771955104507336, 10.54252188266615, 10.77999144795198, 11.40547880705358, 11.79781525190163, 12.50606269212545, 13.00061066951716, 13.34761429312491, 13.66102467059513

Graph of the $Z$-function along the critical line