Properties

Label 121275.eg
Number of curves $2$
Conductor $121275$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 121275.eg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 121275.eg do not have complex multiplication.

Modular form 121275.2.a.eg

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{11} + 5 q^{13} + 4 q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 121275.eg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121275.eg1 121275bc2 \([0, 0, 1, -1306264050, -16208080979344]\) \(2837428440956928/335693359375\) \(29163152497642993927001953125\) \([]\) \(88542720\) \(4.1931\)  
121275.eg2 121275bc1 \([0, 0, 1, -1266647550, -17351291018469]\) \(1885935710810898432/4159375\) \(495669581216455078125\) \([]\) \(29514240\) \(3.6438\) \(\Gamma_0(N)\)-optimal