Properties

Label 2-1166-1.1-c1-0-4
Degree $2$
Conductor $1166$
Sign $1$
Analytic cond. $9.31055$
Root an. cond. $3.05132$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 8-s − 3·9-s + 2·10-s − 11-s + 6·13-s + 16-s − 6·17-s + 3·18-s + 4·19-s − 2·20-s + 22-s − 4·23-s − 25-s − 6·26-s + 6·29-s + 4·31-s − 32-s + 6·34-s − 3·36-s + 6·37-s − 4·38-s + 2·40-s + 6·41-s + 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.353·8-s − 9-s + 0.632·10-s − 0.301·11-s + 1.66·13-s + 1/4·16-s − 1.45·17-s + 0.707·18-s + 0.917·19-s − 0.447·20-s + 0.213·22-s − 0.834·23-s − 1/5·25-s − 1.17·26-s + 1.11·29-s + 0.718·31-s − 0.176·32-s + 1.02·34-s − 1/2·36-s + 0.986·37-s − 0.648·38-s + 0.316·40-s + 0.937·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1166\)    =    \(2 \cdot 11 \cdot 53\)
Sign: $1$
Analytic conductor: \(9.31055\)
Root analytic conductor: \(3.05132\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1166,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8228574650\)
\(L(\frac12)\) \(\approx\) \(0.8228574650\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
11 \( 1 + T \)
53 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.670300669796541059758992688379, −8.737268913707583930159966316708, −8.288197940112897224885981582094, −7.58891718305931030427980967155, −6.44359756614282060066536130330, −5.84325975480226856064380217543, −4.46009110977784465199702050757, −3.48650550367727036943212305699, −2.42147208638042129045453297782, −0.74450849767196520290416116174, 0.74450849767196520290416116174, 2.42147208638042129045453297782, 3.48650550367727036943212305699, 4.46009110977784465199702050757, 5.84325975480226856064380217543, 6.44359756614282060066536130330, 7.58891718305931030427980967155, 8.288197940112897224885981582094, 8.737268913707583930159966316708, 9.670300669796541059758992688379

Graph of the $Z$-function along the critical line