Properties

Label 2-116160-1.1-c1-0-125
Degree $2$
Conductor $116160$
Sign $-1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s + 4·13-s − 15-s − 6·17-s − 2·19-s − 2·21-s − 8·23-s + 25-s + 27-s + 6·29-s + 2·35-s + 6·37-s + 4·39-s − 10·41-s + 2·43-s − 45-s − 12·47-s − 3·49-s − 6·51-s + 6·53-s − 2·57-s + 8·59-s − 2·63-s − 4·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 1.10·13-s − 0.258·15-s − 1.45·17-s − 0.458·19-s − 0.436·21-s − 1.66·23-s + 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.338·35-s + 0.986·37-s + 0.640·39-s − 1.56·41-s + 0.304·43-s − 0.149·45-s − 1.75·47-s − 3/7·49-s − 0.840·51-s + 0.824·53-s − 0.264·57-s + 1.04·59-s − 0.251·63-s − 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67718864497357, −13.43796967296098, −12.89997374050985, −12.58834018287716, −11.79521406937111, −11.49651897353258, −10.95995169370224, −10.32017233619688, −9.938673045500193, −9.485434607804552, −8.719829065152951, −8.411339573896540, −8.192396139506885, −7.362641666085526, −6.804938849228625, −6.287152058150946, −6.118820248600099, −5.125209298840464, −4.469701270422291, −4.061568151393645, −3.501134134867162, −3.020538435636166, −2.228098960557005, −1.780755735994646, −0.7764302250286481, 0, 0.7764302250286481, 1.780755735994646, 2.228098960557005, 3.020538435636166, 3.501134134867162, 4.061568151393645, 4.469701270422291, 5.125209298840464, 6.118820248600099, 6.287152058150946, 6.804938849228625, 7.362641666085526, 8.192396139506885, 8.411339573896540, 8.719829065152951, 9.485434607804552, 9.938673045500193, 10.32017233619688, 10.95995169370224, 11.49651897353258, 11.79521406937111, 12.58834018287716, 12.89997374050985, 13.43796967296098, 13.67718864497357

Graph of the $Z$-function along the critical line