Properties

Label 2-11616-1.1-c1-0-21
Degree $2$
Conductor $11616$
Sign $-1$
Analytic cond. $92.7542$
Root an. cond. $9.63089$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s + 13-s − 15-s + 5·17-s − 8·19-s − 2·21-s + 6·23-s − 4·25-s + 27-s + 3·29-s + 4·31-s + 2·35-s − 11·37-s + 39-s − 3·41-s + 2·43-s − 45-s + 4·47-s − 3·49-s + 5·51-s + 3·53-s − 8·57-s + 6·59-s − 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.277·13-s − 0.258·15-s + 1.21·17-s − 1.83·19-s − 0.436·21-s + 1.25·23-s − 4/5·25-s + 0.192·27-s + 0.557·29-s + 0.718·31-s + 0.338·35-s − 1.80·37-s + 0.160·39-s − 0.468·41-s + 0.304·43-s − 0.149·45-s + 0.583·47-s − 3/7·49-s + 0.700·51-s + 0.412·53-s − 1.05·57-s + 0.781·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11616\)    =    \(2^{5} \cdot 3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(92.7542\)
Root analytic conductor: \(9.63089\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.85296264014370, −15.88836811366471, −15.65907064519725, −14.98287942664303, −14.56731660676557, −13.74530517446717, −13.42024640219843, −12.52228129693231, −12.41747888165102, −11.59500121000688, −10.80843620769524, −10.27146269202786, −9.795974596738420, −8.923947487351360, −8.568881895912089, −7.920228174207252, −7.197355719398698, −6.621243408276639, −5.985198154439084, −5.113276287260233, −4.313397725838290, −3.612747169578744, −3.090972875021557, −2.233348740176525, −1.201170011812095, 0, 1.201170011812095, 2.233348740176525, 3.090972875021557, 3.612747169578744, 4.313397725838290, 5.113276287260233, 5.985198154439084, 6.621243408276639, 7.197355719398698, 7.920228174207252, 8.568881895912089, 8.923947487351360, 9.795974596738420, 10.27146269202786, 10.80843620769524, 11.59500121000688, 12.41747888165102, 12.52228129693231, 13.42024640219843, 13.74530517446717, 14.56731660676557, 14.98287942664303, 15.65907064519725, 15.88836811366471, 16.85296264014370

Graph of the $Z$-function along the critical line