Invariants
Base field: | $\F_{89}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 13 x + 89 x^{2}$ |
Frobenius angles: | $\pm0.258050592749$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-187}) \) |
Galois group: | $C_2$ |
Jacobians: | $2$ |
Isomorphism classes: | 2 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $77$ | $7931$ | $706244$ | $62758003$ | $5584150957$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $77$ | $7931$ | $706244$ | $62758003$ | $5584150957$ | $496981077824$ | $44231323980613$ | $3936588682777443$ | $350356403080892516$ | $31181719932760771451$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which 0 are hyperelliptic):
- $y^2=x^3+52 x+52$
- $y^2=x^3+51 x+64$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-187}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.89.n | $2$ | (not in LMFDB) |