Properties

Label 2-116032-1.1-c1-0-48
Degree $2$
Conductor $116032$
Sign $1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 9-s − 2·13-s − 4·15-s − 8·17-s − 4·23-s − 25-s + 4·27-s + 2·29-s + 6·31-s + 37-s + 4·39-s − 6·41-s − 4·43-s + 2·45-s + 8·47-s + 16·51-s − 6·53-s − 4·59-s − 10·61-s − 4·65-s − 16·67-s + 8·69-s − 8·71-s − 2·73-s + 2·75-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 1/3·9-s − 0.554·13-s − 1.03·15-s − 1.94·17-s − 0.834·23-s − 1/5·25-s + 0.769·27-s + 0.371·29-s + 1.07·31-s + 0.164·37-s + 0.640·39-s − 0.937·41-s − 0.609·43-s + 0.298·45-s + 1.16·47-s + 2.24·51-s − 0.824·53-s − 0.520·59-s − 1.28·61-s − 0.496·65-s − 1.95·67-s + 0.963·69-s − 0.949·71-s − 0.234·73-s + 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92018420141225, −13.59604110814226, −13.17145028609443, −12.53758975774803, −12.05099986160713, −11.69661763670489, −11.22363166266016, −10.61696150407352, −10.29953716377830, −9.859839290469920, −9.197695462921391, −8.802527020363780, −8.207683849740209, −7.553418599377573, −6.827708035108657, −6.526718863414860, −6.018548662555915, −5.649688963235687, −5.006223554075203, −4.442403133840210, −4.190663989327525, −2.956789909031492, −2.609362544305302, −1.807763063663938, −1.297649259350403, 0, 0, 1.297649259350403, 1.807763063663938, 2.609362544305302, 2.956789909031492, 4.190663989327525, 4.442403133840210, 5.006223554075203, 5.649688963235687, 6.018548662555915, 6.526718863414860, 6.827708035108657, 7.553418599377573, 8.207683849740209, 8.802527020363780, 9.197695462921391, 9.859839290469920, 10.29953716377830, 10.61696150407352, 11.22363166266016, 11.69661763670489, 12.05099986160713, 12.53758975774803, 13.17145028609443, 13.59604110814226, 13.92018420141225

Graph of the $Z$-function along the critical line