Properties

Label 2-112632-1.1-c1-0-9
Degree $2$
Conductor $112632$
Sign $-1$
Analytic cond. $899.371$
Root an. cond. $29.9895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 9-s − 6·11-s − 13-s − 4·15-s − 6·17-s − 8·23-s + 11·25-s + 27-s + 6·29-s − 10·31-s − 6·33-s − 10·37-s − 39-s − 10·41-s + 8·43-s − 4·45-s + 12·47-s − 7·49-s − 6·51-s + 10·53-s + 24·55-s + 4·59-s + 6·61-s + 4·65-s + 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 1/3·9-s − 1.80·11-s − 0.277·13-s − 1.03·15-s − 1.45·17-s − 1.66·23-s + 11/5·25-s + 0.192·27-s + 1.11·29-s − 1.79·31-s − 1.04·33-s − 1.64·37-s − 0.160·39-s − 1.56·41-s + 1.21·43-s − 0.596·45-s + 1.75·47-s − 49-s − 0.840·51-s + 1.37·53-s + 3.23·55-s + 0.520·59-s + 0.768·61-s + 0.496·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112632\)    =    \(2^{3} \cdot 3 \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(899.371\)
Root analytic conductor: \(29.9895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 112632,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + T \)
19 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76126143482440, −13.49393294154858, −12.77534609423262, −12.41722356988969, −12.05622024383126, −11.45329060819440, −10.87546349288923, −10.54739701805338, −10.13949904495693, −9.356370532198902, −8.645345187056219, −8.438178091385863, −7.971514370256014, −7.518261283809356, −6.978772710811719, −6.706815997077598, −5.496114865053578, −5.306376327639130, −4.436783328839419, −4.108384072809962, −3.613011051613152, −2.902545532317396, −2.397498021375909, −1.801710162716378, −0.5056432001902866, 0, 0.5056432001902866, 1.801710162716378, 2.397498021375909, 2.902545532317396, 3.613011051613152, 4.108384072809962, 4.436783328839419, 5.306376327639130, 5.496114865053578, 6.706815997077598, 6.978772710811719, 7.518261283809356, 7.971514370256014, 8.438178091385863, 8.645345187056219, 9.356370532198902, 10.13949904495693, 10.54739701805338, 10.87546349288923, 11.45329060819440, 12.05622024383126, 12.41722356988969, 12.77534609423262, 13.49393294154858, 13.76126143482440

Graph of the $Z$-function along the critical line