Properties

Label 2-10710-1.1-c1-0-33
Degree $2$
Conductor $10710$
Sign $-1$
Analytic cond. $85.5197$
Root an. cond. $9.24769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 4·13-s + 14-s + 16-s + 17-s + 2·19-s − 20-s − 6·23-s + 25-s − 4·26-s + 28-s − 4·31-s + 32-s + 34-s − 35-s + 8·37-s + 2·38-s − 40-s + 6·41-s − 4·43-s − 6·46-s − 6·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 1.10·13-s + 0.267·14-s + 1/4·16-s + 0.242·17-s + 0.458·19-s − 0.223·20-s − 1.25·23-s + 1/5·25-s − 0.784·26-s + 0.188·28-s − 0.718·31-s + 0.176·32-s + 0.171·34-s − 0.169·35-s + 1.31·37-s + 0.324·38-s − 0.158·40-s + 0.937·41-s − 0.609·43-s − 0.884·46-s − 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(85.5197\)
Root analytic conductor: \(9.24769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10710,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.77296535614915, −16.07644854433459, −15.72530732760557, −14.94898336065491, −14.43580107967117, −14.24045364082650, −13.32203107796731, −12.81279029388290, −12.15253138535625, −11.79999036269501, −11.15183740622051, −10.59688108254004, −9.698166490480658, −9.440264325346982, −8.196229966580982, −7.923859684353655, −7.243811138260953, −6.587378655034219, −5.757570991661869, −5.190551810947753, −4.458433188765135, −3.923851598402617, −3.022954255948121, −2.319223871217576, −1.365851168858128, 0, 1.365851168858128, 2.319223871217576, 3.022954255948121, 3.923851598402617, 4.458433188765135, 5.190551810947753, 5.757570991661869, 6.587378655034219, 7.243811138260953, 7.923859684353655, 8.196229966580982, 9.440264325346982, 9.698166490480658, 10.59688108254004, 11.15183740622051, 11.79999036269501, 12.15253138535625, 12.81279029388290, 13.32203107796731, 14.24045364082650, 14.43580107967117, 14.94898336065491, 15.72530732760557, 16.07644854433459, 16.77296535614915

Graph of the $Z$-function along the critical line