Properties

Label 2-106470-1.1-c1-0-114
Degree $2$
Conductor $106470$
Sign $-1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 7-s − 8-s − 10-s + 4·11-s − 14-s + 16-s − 6·19-s + 20-s − 4·22-s + 6·23-s + 25-s + 28-s − 2·29-s − 10·31-s − 32-s + 35-s + 10·37-s + 6·38-s − 40-s − 2·41-s − 2·43-s + 4·44-s − 6·46-s − 12·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s + 1.20·11-s − 0.267·14-s + 1/4·16-s − 1.37·19-s + 0.223·20-s − 0.852·22-s + 1.25·23-s + 1/5·25-s + 0.188·28-s − 0.371·29-s − 1.79·31-s − 0.176·32-s + 0.169·35-s + 1.64·37-s + 0.973·38-s − 0.158·40-s − 0.312·41-s − 0.304·43-s + 0.603·44-s − 0.884·46-s − 1.75·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16566441967339, −13.22263629577716, −12.96418435004594, −12.58611846885962, −11.72304898655418, −11.46784856545630, −10.92060354175752, −10.62313410751085, −9.842685088904453, −9.478177595561561, −9.000423310718081, −8.603104369919935, −8.105210851596452, −7.366753406175608, −6.996411232221412, −6.391200854346974, −6.043736011191771, −5.330774153467139, −4.729035521087278, −4.101042856636293, −3.508594116614491, −2.806636338148306, −2.032764960667865, −1.614566369101083, −0.9479226731428305, 0, 0.9479226731428305, 1.614566369101083, 2.032764960667865, 2.806636338148306, 3.508594116614491, 4.101042856636293, 4.729035521087278, 5.330774153467139, 6.043736011191771, 6.391200854346974, 6.996411232221412, 7.366753406175608, 8.105210851596452, 8.603104369919935, 9.000423310718081, 9.478177595561561, 9.842685088904453, 10.62313410751085, 10.92060354175752, 11.46784856545630, 11.72304898655418, 12.58611846885962, 12.96418435004594, 13.22263629577716, 14.16566441967339

Graph of the $Z$-function along the critical line