Properties

Label 2-106470-1.1-c1-0-1
Degree $2$
Conductor $106470$
Sign $1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s − 6·11-s + 14-s + 16-s − 6·17-s − 2·19-s − 20-s + 6·22-s + 25-s − 28-s + 4·31-s − 32-s + 6·34-s + 35-s − 2·37-s + 2·38-s + 40-s − 6·41-s + 8·43-s − 6·44-s + 49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s − 1.80·11-s + 0.267·14-s + 1/4·16-s − 1.45·17-s − 0.458·19-s − 0.223·20-s + 1.27·22-s + 1/5·25-s − 0.188·28-s + 0.718·31-s − 0.176·32-s + 1.02·34-s + 0.169·35-s − 0.328·37-s + 0.324·38-s + 0.158·40-s − 0.937·41-s + 1.21·43-s − 0.904·44-s + 1/7·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2794237633\)
\(L(\frac12)\) \(\approx\) \(0.2794237633\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46987784521856, −13.23789945456564, −12.70677444845854, −12.25101573123831, −11.57226791441325, −11.20803782935162, −10.58058745767541, −10.35863216983300, −9.869592629419077, −9.129411290930604, −8.701283221570758, −8.269219504536140, −7.785097699330260, −7.259975536303295, −6.723444062385878, −6.311832718687191, −5.487318764534800, −5.123065287991402, −4.370268438164438, −3.847115733779026, −3.037558826805679, −2.432371399635040, −2.177642459791759, −1.043448716244661, −0.2039361447070195, 0.2039361447070195, 1.043448716244661, 2.177642459791759, 2.432371399635040, 3.037558826805679, 3.847115733779026, 4.370268438164438, 5.123065287991402, 5.487318764534800, 6.311832718687191, 6.723444062385878, 7.259975536303295, 7.785097699330260, 8.269219504536140, 8.701283221570758, 9.129411290930604, 9.869592629419077, 10.35863216983300, 10.58058745767541, 11.20803782935162, 11.57226791441325, 12.25101573123831, 12.70677444845854, 13.23789945456564, 13.46987784521856

Graph of the $Z$-function along the critical line