Subgroup ($H$) information
Description: | $D_{12}.C_{32}$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
46 & 0 \\
0 & 4
\end{array}\right), \left(\begin{array}{rr}
186 & 0 \\
0 & 16
\end{array}\right), \left(\begin{array}{rr}
84 & 0 \\
0 & 108
\end{array}\right), \left(\begin{array}{rr}
85 & 0 \\
0 & 109
\end{array}\right), \left(\begin{array}{rr}
0 & 84 \\
130 & 0
\end{array}\right), \left(\begin{array}{rr}
25 & 0 \\
0 & 191
\end{array}\right), \left(\begin{array}{rr}
5 & 0 \\
0 & 34
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 192
\end{array}\right), \left(\begin{array}{rr}
49 & 0 \\
0 & 130
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $D_{24}.C_{96}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{16}\times D_4\times S_3$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_3 \rtimes ((C_2\times C_8) . C_2^5)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $1$ |
Projective image | $C_3\times D_{12}$ |