Subgroup ($H$) information
| Description: | $C_{12}.C_{24}$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 0 \\
0 & 85
\end{array}\right), \left(\begin{array}{rr}
84 & 0 \\
0 & 108
\end{array}\right), \left(\begin{array}{rr}
85 & 0 \\
0 & 109
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 84
\end{array}\right), \left(\begin{array}{rr}
0 & 46 \\
190 & 0
\end{array}\right), \left(\begin{array}{rr}
186 & 0 \\
0 & 186
\end{array}\right), \left(\begin{array}{rr}
49 & 0 \\
0 & 130
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Ambient group ($G$) information
| Description: | $D_{24}.C_{96}$ |
| Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times C_8$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Automorphism Group: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| Outer Automorphisms: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
| $\operatorname{Aut}(H)$ | $D_{12}:C_2^4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\operatorname{res}(S)$ | $D_{12}:C_2^4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_8\times D_{12}$ |