Subgroup ($H$) information
Description: | $C_3\times D_{24}$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Index: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
186 & 0 \\
0 & 55
\end{array}\right), \left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right), \left(\begin{array}{rr}
84 & 0 \\
0 & 108
\end{array}\right), \left(\begin{array}{rr}
85 & 0 \\
0 & 109
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 84
\end{array}\right), \left(\begin{array}{rr}
49 & 0 \\
0 & 130
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Ambient group ($G$) information
Description: | $D_{24}.C_{96}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_{32}$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(32\)\(\medspace = 2^{5} \) |
Automorphism Group: | $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \) |
Outer Automorphisms: | $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $C_{24}:C_2^4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{24}:C_2^4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
$W$ | $D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_3 \rtimes (D_4\times C_{32})$ |