Subgroup ($H$) information
Description: | $C_8.C_{96}$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
0 & 5 \\
5 & 0
\end{array}\right), \left(\begin{array}{rr}
25 & 0 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
46 & 0 \\
0 & 46
\end{array}\right), \left(\begin{array}{rr}
84 & 0 \\
0 & 144
\end{array}\right), \left(\begin{array}{rr}
81 & 0 \\
0 & 112
\end{array}\right), \left(\begin{array}{rr}
192 & 0 \\
0 & 192
\end{array}\right), \left(\begin{array}{rr}
108 & 0 \\
0 & 108
\end{array}\right), \left(\begin{array}{rr}
186 & 0 \\
0 & 186
\end{array}\right), \left(\begin{array}{rr}
84 & 0 \\
0 & 109
\end{array}\right)$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $D_{24}.C_{96}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $(C_2\times C_8).C_2^6$ |
$\card{\operatorname{res}(S)}$ | \(1024\)\(\medspace = 2^{10} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $1$ |
Projective image | $C_2\times D_{12}$ |