Subgroup ($H$) information
Description: | $C_2\times C_{64}$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(64\)\(\medspace = 2^{6} \) |
Generators: |
$\left(\begin{array}{rr}
154 & 0 \\
0 & 71
\end{array}\right), \left(\begin{array}{rr}
170 & 0 \\
0 & 170
\end{array}\right), \left(\begin{array}{rr}
81 & 0 \\
0 & 112
\end{array}\right), \left(\begin{array}{rr}
143 & 0 \\
0 & 143
\end{array}\right), \left(\begin{array}{rr}
192 & 0 \\
0 & 192
\end{array}\right), \left(\begin{array}{rr}
184 & 0 \\
0 & 184
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 192
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $D_{24}.C_{96}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6\times S_3$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $\OD_{32}:C_2^2$, of order \(128\)\(\medspace = 2^{7} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $6$ |
Projective image | $C_6\times D_{12}$ |