Subgroup ($H$) information
Description: | $C_3\times \OD_{128}$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
25 & 0 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
46 & 0 \\
0 & 46
\end{array}\right), \left(\begin{array}{rr}
19 & 0 \\
0 & 174
\end{array}\right), \left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right), \left(\begin{array}{rr}
192 & 0 \\
0 & 192
\end{array}\right), \left(\begin{array}{rr}
49 & 0 \\
0 & 49
\end{array}\right), \left(\begin{array}{rr}
108 & 0 \\
0 & 108
\end{array}\right), \left(\begin{array}{rr}
186 & 0 \\
0 & 186
\end{array}\right)$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $D_{24}.C_{96}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $C_{16}.C_2^4$, of order \(256\)\(\medspace = 2^{8} \) |
$\operatorname{res}(S)$ | $C_2^3\times C_{16}$, of order \(128\)\(\medspace = 2^{7} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $6$ |
Möbius function | $0$ |
Projective image | $C_2\times D_{12}$ |