Subgroup ($H$) information
Description: | $C_3:\OD_{128}$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
46 & 0 \\
0 & 4
\end{array}\right), \left(\begin{array}{rr}
186 & 0 \\
0 & 16
\end{array}\right), \left(\begin{array}{rr}
84 & 0 \\
0 & 108
\end{array}\right), \left(\begin{array}{rr}
0 & 34 \\
5 & 0
\end{array}\right), \left(\begin{array}{rr}
85 & 0 \\
0 & 109
\end{array}\right), \left(\begin{array}{rr}
25 & 0 \\
0 & 191
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 192
\end{array}\right), \left(\begin{array}{rr}
49 & 0 \\
0 & 130
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{24}.C_{96}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2\times C_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $C_3:(C_8.C_2^5)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_3 \rtimes (C_{16}.C_2^4)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $-2$ |
Projective image | $C_6\times D_{12}$ |