Subgroup ($H$) information
Description: | $C_2\times C_{192}$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
25 & 0 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
46 & 0 \\
0 & 46
\end{array}\right), \left(\begin{array}{rr}
81 & 0 \\
0 & 112
\end{array}\right), \left(\begin{array}{rr}
5 & 0 \\
0 & 5
\end{array}\right), \left(\begin{array}{rr}
192 & 0 \\
0 & 192
\end{array}\right), \left(\begin{array}{rr}
108 & 0 \\
0 & 108
\end{array}\right), \left(\begin{array}{rr}
186 & 0 \\
0 & 186
\end{array}\right), \left(\begin{array}{rr}
84 & 0 \\
0 & 109
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $D_{24}.C_{96}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $D_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_4\times C_8).C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $C_{16}.C_2^4$, of order \(256\)\(\medspace = 2^{8} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^3\times C_{16}$, of order \(128\)\(\medspace = 2^{7} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $-6$ |
Projective image | $D_{12}$ |