Properties

Label 1536.230682437
Order \( 2^{9} \cdot 3 \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{8} \)
$\card{Z(G)}$ \( 2^{6} \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{15} \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_3 \rtimes ((C_2\times C_8) . C_2^5)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism group:Group of order 786432
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6 8 12 16 24 48
Elements 1 95 2 160 46 256 80 512 128 256 1536
Conjugacy classes   1 31 1 48 15 80 24 160 40 80 480
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 4
Irr. complex chars.   256 192 32 480

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{2}=d^{2}=e^{2}=f^{2}=i^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(D_{12}.C_{32})$ $\Aut(D_{12}.C_{32})$ $\Aut(C_{24}:C_{34})$ $\Aut(C_6:C_{136})$ all 15

Homology

Abelianization: $C_{2}^{4} \times C_{16} $

Subgroups

Center: $Z \simeq$ $C_2^2\times C_{16}$ $G/Z \simeq$ $C_2\times D_6$
Commutator: $G' \simeq$ $C_6$ $G/G' \simeq$ $C_2^4\times C_{16}$
Frattini: $\Phi \simeq$ $C_2\times C_8$ $G/\Phi \simeq$ $C_2^3\times D_6$
Fitting: $\operatorname{Fit} \simeq$ $C_3 \times (C_2\times D_4\times C_{16})$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $C_3 \rtimes ((C_2\times C_8) . C_2^5)$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^2\times C_6$ $G/S \simeq$ $C_2^3\times C_8$
2-Sylow subgroup: $P_{2} \simeq$ $(C_2\times C_8) . C_2^5$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
Maximal subgroups: $M_{2,1} \simeq$ $C_3 \rtimes (C_4^2.C_2^4)$ $G/M_{2,1} \simeq$ $C_2$
$M_{2,2} \simeq$ $C_3 \rtimes (C_2^4\times C_{16})$ $G/M_{2,2} \simeq$ $C_2$ 2 normal subgroups
$M_{2,3} \simeq$ $C_3 \times (C_2\times D_4\times C_{16})$ $G/M_{2,3} \simeq$ $C_2$
$M_{2,4} \simeq$ $C_3 \rtimes (C_2^2\times C_4\times C_{16})$ $G/M_{2,4} \simeq$ $C_2$
$M_{2,5} \simeq$ $C_3 \rtimes (C_2^4:C_{16})$ $G/M_{2,5} \simeq$ $C_2$ 2 normal subgroups
$M_{2,6} \simeq$ $C_3 \rtimes (C_2^3.\OD_{32})$ $G/M_{2,6} \simeq$ $C_2$
$M_{2,7} \simeq$ $C_3 \rtimes (C_2\times D_4\times C_{16})$ $G/M_{2,7} \simeq$ $C_2$ 16 normal subgroups
$M_{2,8} \simeq$ $C_3 \rtimes (C_2\times D_4\times C_{16})$ $G/M_{2,8} \simeq$ $C_2$ 2 normal subgroups
$M_{2,9} \simeq$ $C_3 \rtimes (C_2\times D_4\times C_{16})$ $G/M_{2,9} \simeq$ $C_2$ 2 normal subgroups
$M_{2,10} \simeq$ $C_3 \rtimes (C_2\times D_4\times C_{16})$ $G/M_{2,10} \simeq$ $C_2$
$M_{2,11} \simeq$ $C_3 \rtimes (C_2\times D_4\times C_{16})$ $G/M_{2,11} \simeq$ $C_2$
$M_{2,12} \simeq$ $C_3 \rtimes (C_2\times D_4\times C_{16})$ $G/M_{2,12} \simeq$ $C_2$
$M_{3} \simeq$ $(C_2\times C_8) . C_2^5$ 3 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_3 \rtimes (C_4^2.C_2^4)$
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_3 \rtimes (C_2^4\times C_{16})$
$m_{2,3} \simeq$ $C_2$ $G/m_{2,3} \simeq$ $C_3 \rtimes (C_{16}.C_2^4)$
$m_{2,4} \simeq$ $C_2$ $G/m_{2,4} \simeq$ $C_3 \rtimes (C_2\times D_4\times C_{16})$ 4 normal subgroups
$m_{3} \simeq$ $C_3$ $G/m_{3} \simeq$ $(C_2\times C_8) . C_2^5$