Learn more

Refine search


Results (1-50 of 133616 matches)

Next   There are too many results (133616) to download.
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
15.a2 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -135, -660]$ \(y^2+xy+y=x^3+x^2-135x-660\)
15.a4 15.a \( 3 \cdot 5 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -80, 242]$ \(y^2+xy+y=x^3+x^2-80x+242\)
15.a7 15.a \( 3 \cdot 5 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, 0, 0]$ \(y^2+xy+y=x^3+x^2\)
17.a2 17.a \( 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -6, -4]$ \(y^2+xy+y=x^3-x^2-6x-4\)
17.a3 17.a \( 17 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -1, -14]$ \(y^2+xy+y=x^3-x^2-x-14\)
17.a4 17.a \( 17 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -1, 0]$ \(y^2+xy+y=x^3-x^2-x\)
21.a2 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -49, -136]$ \(y^2+xy=x^3-49x-136\)
21.a6 21.a \( 3 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 1, 0]$ \(y^2+xy=x^3+x\)
24.a2 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -64, 220]$ \(y^2=x^3-x^2-64x+220\)
24.a3 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -24, -36]$ \(y^2=x^3-x^2-24x-36\)
24.a5 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, 1, 0]$ \(y^2=x^3-x^2+x\)
30.a3 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -334, -2368]$ \(y^2+xy+y=x^3-334x-2368\)
32.a2 32.a \( 2^{5} \) $0$ $\Z/4\Z$ $-16$ $1$ $[0, 0, 0, -11, 14]$ \(y^2=x^3-11x+14\)
32.a3 32.a \( 2^{5} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $1$ $[0, 0, 0, -1, 0]$ \(y^2=x^3-x\)
32.a4 32.a \( 2^{5} \) $0$ $\Z/4\Z$ $-4$ $1$ $[0, 0, 0, 4, 0]$ \(y^2=x^3+4x\)
33.a1 33.a \( 3 \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 0, -146, 621]$ \(y^2+xy=x^3+x^2-146x+621\)
33.a2 33.a \( 3 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -11, 0]$ \(y^2+xy=x^3+x^2-11x\)
39.a2 39.a \( 3 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 0, -19, 22]$ \(y^2+xy=x^3+x^2-19x+22\)
39.a3 39.a \( 3 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -4, -5]$ \(y^2+xy=x^3+x^2-4x-5\)
40.a2 40.a \( 2^{3} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -7, -6]$ \(y^2=x^3-7x-6\)
40.a3 40.a \( 2^{3} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -2, 1]$ \(y^2=x^3-2x+1\)
40.a4 40.a \( 2^{3} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 13, -34]$ \(y^2=x^3+13x-34\)
42.a1 42.a \( 2 \cdot 3 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -1344, 18405]$ \(y^2+xy+y=x^3+x^2-1344x+18405\)
42.a3 42.a \( 2 \cdot 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -104, 101]$ \(y^2+xy+y=x^3+x^2-104x+101\)
45.a2 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -1215, 16600]$ \(y^2+xy=x^3-x^2-1215x+16600\)
45.a5 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -90, 175]$ \(y^2+xy=x^3-x^2-90x+175\)
45.a6 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -45, -104]$ \(y^2+xy=x^3-x^2-45x-104\)
48.a1 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -384, 2772]$ \(y^2=x^3+x^2-384x+2772\)
48.a4 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -4, -4]$ \(y^2=x^3+x^2-4x-4\)
55.a1 55.a \( 5 \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 0, -59, 190]$ \(y^2+xy=x^3-x^2-59x+190\)
55.a3 55.a \( 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -4, 3]$ \(y^2+xy=x^3-x^2-4x+3\)
56.a3 56.a \( 2^{3} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -19, 30]$ \(y^2=x^3-19x+30\)
56.a4 56.a \( 2^{3} \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 1, 2]$ \(y^2=x^3+x+2\)
57.c1 57.c \( 3 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -102, 385]$ \(y^2+xy+y=x^3-102x+385\)
57.c2 57.c \( 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -7, 5]$ \(y^2+xy+y=x^3-7x+5\)
62.a3 62.a \( 2 \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -21, 41]$ \(y^2+xy+y=x^3-x^2-21x+41\)
62.a4 62.a \( 2 \cdot 31 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -1, 1]$ \(y^2+xy+y=x^3-x^2-x+1\)
63.a1 63.a \( 3^{2} \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 0, -7056, 229905]$ \(y^2+xy=x^3-x^2-7056x+229905\)
63.a2 63.a \( 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -441, 3672]$ \(y^2+xy=x^3-x^2-441x+3672\)
63.a5 63.a \( 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -36, 27]$ \(y^2+xy=x^3-x^2-36x+27\)
64.a2 64.a \( 2^{6} \) $0$ $\Z/4\Z$ $-16$ $1$ $[0, 0, 0, -44, 112]$ \(y^2=x^3-44x+112\)
64.a3 64.a \( 2^{6} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $1$ $[0, 0, 0, -4, 0]$ \(y^2=x^3-4x\)
66.b2 66.b \( 2 \cdot 3 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -22, -49]$ \(y^2+xy+y=x^3+x^2-22x-49\)
66.b4 66.b \( 2 \cdot 3 \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -2, -1]$ \(y^2+xy+y=x^3+x^2-2x-1\)
70.a3 70.a \( 2 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -18, -19]$ \(y^2+xy+y=x^3-x^2-18x-19\)
70.a4 70.a \( 2 \cdot 5 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, 2, -3]$ \(y^2+xy+y=x^3-x^2+2x-3\)
72.a3 72.a \( 2^{3} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -219, 1190]$ \(y^2=x^3-219x+1190\)
72.a4 72.a \( 2^{3} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -39, -70]$ \(y^2=x^3-39x-70\)
72.a5 72.a \( 2^{3} \cdot 3^{2} \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 6, -7]$ \(y^2=x^3+6x-7\)
75.b2 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -3376, -75727]$ \(y^2+xy+y=x^3-3376x-75727\)
Next   There are too many results (133616) to download.