Show commands for: Magma / Pari/GP / SageMath

This is a model for the modular curve $X_0(17)$.

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -1, -14]) # or

sage: E = EllipticCurve("17a1")

gp: E = ellinit([1, -1, 1, -1, -14]) \\ or

gp: E = ellinit("17a1")

magma: E := EllipticCurve([1, -1, 1, -1, -14]); // or

magma: E := EllipticCurve("17a1");

$$y^2 + x y + y = x^{3} - x^{2} - x - 14$$

## Mordell-Weil group structure

$$\Z/{4}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(7, 13\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(7, 13\right)$$, $$\left(7, -21\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$17$$ = $$17$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-83521$$ = $$-1 \cdot 17^{4}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{35937}{83521}$$ = $$-1 \cdot 3^{3} \cdot 11^{3} \cdot 17^{-4}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$1.54707975355$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$4$$  = $$2^{2}$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q - q^{2} - q^{4} - 2q^{5} + 4q^{7} + 3q^{8} - 3q^{9} + 2q^{10} - 2q^{13} - 4q^{14} - q^{16} + q^{17} + 3q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$0.386769938388$$

## Local data

This elliptic curve is semistable.

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$17$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X221a.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 9 & 9 \\ 12 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 10 \\ 4 & 1 \end{array}\right)$ and has index 96.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type 2 17 ordinary split 0 1 2 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 17a consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{-1})$$ $$\Z/2\Z \times \Z/4\Z$$ 2.0.4.1-289.2-a1
$4$ $$\Q(\zeta_{8})$$ $$\Z/4\Z \times \Z/4\Z$$ Not in database
$4$ 4.2.1156.1 $$\Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.

This is the only elliptic curve over $\Q$ of prime conductor $N$ and discriminant $\Delta = \pm N^4$, and one of only four prime-conductor curves of discriminant $\pm N^e$ with $e > 2$: the others are the modular curves $X_0(N)$ for N=11 [11.a2] and N=19 [19.a2], and the curve [37.b2] (with $e=5,3,3$ respectively -- in each case, as here with $(N,e)=(17,4)$, the exponent $e$ is the numerator of $(N-1)/12$).