Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 17.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
17.a1 | 17a3 | \([1, -1, 1, -91, -310]\) | \(82483294977/17\) | \(17\) | \([2]\) | \(4\) | \(-0.37664\) | |
17.a2 | 17a2 | \([1, -1, 1, -6, -4]\) | \(20346417/289\) | \(289\) | \([2, 2]\) | \(2\) | \(-0.72321\) | |
17.a3 | 17a1 | \([1, -1, 1, -1, -14]\) | \(-35937/83521\) | \(-83521\) | \([4]\) | \(1\) | \(-0.37664\) | \(\Gamma_0(N)\)-optimal |
17.a4 | 17a4 | \([1, -1, 1, -1, 0]\) | \(35937/17\) | \(17\) | \([4]\) | \(4\) | \(-1.0698\) |
Rank
sage: E.rank()
The elliptic curves in class 17.a have rank \(0\).
Complex multiplication
The elliptic curves in class 17.a do not have complex multiplication.Modular form 17.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.