Dirichlet series
$L(s, E, \mathrm{sym}^{3})$ = 1 | + 1.06·2-s + 0.375·4-s + 1.07·5-s + 0.431·7-s + 0.662·8-s − 2·9-s + 1.13·10-s + 0.938·13-s + 0.458·14-s + 0.546·16-s + 0.0142·17-s − 2.12·18-s + 1.06·19-s + 0.402·20-s − 1.08·23-s + 0.912·25-s + 0.995·26-s + 0.161·28-s − 0.845·29-s − 1.06·31-s − 0.580·32-s + 0.0151·34-s + 0.463·35-s − 0.750·36-s + 0.622·37-s + 1.12·38-s + 0.711·40-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 4913 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(4913\) = \(17^{3}\) |
Sign: | $1$ |
Arithmetic: | yes |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((4,\ 4913,\ (\ :1.5, 0.5),\ 1)\) |
Particular Values
\[L(1/2, E, \mathrm{sym}^{3}) \approx 2.398566220\]
\[L(1, E, \mathrm{sym}^{3}) \approx 1.895520176\]
Euler product
\(L(s, E, \mathrm{sym}^{3}) = (1-17^{- s})^{-1}\prod_{p \nmid 17 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)
Imaginary part of the first few zeros on the critical line