Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-102x+385\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-102xz^2+385z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-131571x+18368910\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Torsion generators
\( \left(5, 0\right) \)
Integral points
\( \left(5, 0\right) \), \( \left(5, -6\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 57 \) | = | $3 \cdot 19$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $1539 $ | = | $3^{4} \cdot 19 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{115714886617}{1539} \) | = | $3^{-4} \cdot 11^{3} \cdot 19^{-1} \cdot 443^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $-0.24500866220282609366943236987\dots$ | ||
Stable Faltings height: | $-0.24500866220282609366943236987\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $4.3412090890706928922224104326\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 4 $ = $ 2^{2}\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $4$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 1.0853022722676732230556026082 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 6 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $4$ | $I_{4}$ | Split multiplicative | -1 | 1 | 4 | 4 |
$19$ | $1$ | $I_{1}$ | Non-split multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.7 |
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 19 |
---|---|---|---|
Reduction type | ord | split | nonsplit |
$\lambda$-invariant(s) | 0 | 3 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 57b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{19}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | 2.2.76.1-171.1-i5 |
$4$ | 4.0.2736.1 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.3083198857216.5 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.43237380096.2 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.8.249739107434496.1 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.2.23085974187.2 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.