# Properties

 Label 57.2.a.c Level $57$ Weight $2$ Character orbit 57.a Self dual yes Analytic conductor $0.455$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [57,2,Mod(1,57)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(57, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("57.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$57 = 3 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 57.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.455147291521$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - 3 q^{8} + q^{9}+O(q^{10})$$ q + q^2 + q^3 - q^4 - 2 * q^5 + q^6 - 3 * q^8 + q^9 $$q + q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - 3 q^{8} + q^{9} - 2 q^{10} - q^{12} + 6 q^{13} - 2 q^{15} - q^{16} - 6 q^{17} + q^{18} - q^{19} + 2 q^{20} + 4 q^{23} - 3 q^{24} - q^{25} + 6 q^{26} + q^{27} + 2 q^{29} - 2 q^{30} + 8 q^{31} + 5 q^{32} - 6 q^{34} - q^{36} - 10 q^{37} - q^{38} + 6 q^{39} + 6 q^{40} - 2 q^{41} - 4 q^{43} - 2 q^{45} + 4 q^{46} + 12 q^{47} - q^{48} - 7 q^{49} - q^{50} - 6 q^{51} - 6 q^{52} - 6 q^{53} + q^{54} - q^{57} + 2 q^{58} - 12 q^{59} + 2 q^{60} - 2 q^{61} + 8 q^{62} + 7 q^{64} - 12 q^{65} - 4 q^{67} + 6 q^{68} + 4 q^{69} - 3 q^{72} + 10 q^{73} - 10 q^{74} - q^{75} + q^{76} + 6 q^{78} + 2 q^{80} + q^{81} - 2 q^{82} + 16 q^{83} + 12 q^{85} - 4 q^{86} + 2 q^{87} - 2 q^{89} - 2 q^{90} - 4 q^{92} + 8 q^{93} + 12 q^{94} + 2 q^{95} + 5 q^{96} + 10 q^{97} - 7 q^{98}+O(q^{100})$$ q + q^2 + q^3 - q^4 - 2 * q^5 + q^6 - 3 * q^8 + q^9 - 2 * q^10 - q^12 + 6 * q^13 - 2 * q^15 - q^16 - 6 * q^17 + q^18 - q^19 + 2 * q^20 + 4 * q^23 - 3 * q^24 - q^25 + 6 * q^26 + q^27 + 2 * q^29 - 2 * q^30 + 8 * q^31 + 5 * q^32 - 6 * q^34 - q^36 - 10 * q^37 - q^38 + 6 * q^39 + 6 * q^40 - 2 * q^41 - 4 * q^43 - 2 * q^45 + 4 * q^46 + 12 * q^47 - q^48 - 7 * q^49 - q^50 - 6 * q^51 - 6 * q^52 - 6 * q^53 + q^54 - q^57 + 2 * q^58 - 12 * q^59 + 2 * q^60 - 2 * q^61 + 8 * q^62 + 7 * q^64 - 12 * q^65 - 4 * q^67 + 6 * q^68 + 4 * q^69 - 3 * q^72 + 10 * q^73 - 10 * q^74 - q^75 + q^76 + 6 * q^78 + 2 * q^80 + q^81 - 2 * q^82 + 16 * q^83 + 12 * q^85 - 4 * q^86 + 2 * q^87 - 2 * q^89 - 2 * q^90 - 4 * q^92 + 8 * q^93 + 12 * q^94 + 2 * q^95 + 5 * q^96 + 10 * q^97 - 7 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 −1.00000 −2.00000 1.00000 0 −3.00000 1.00000 −2.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 57.2.a.c 1
3.b odd 2 1 171.2.a.a 1
4.b odd 2 1 912.2.a.b 1
5.b even 2 1 1425.2.a.a 1
5.c odd 4 2 1425.2.c.g 2
7.b odd 2 1 2793.2.a.i 1
8.b even 2 1 3648.2.a.o 1
8.d odd 2 1 3648.2.a.bf 1
11.b odd 2 1 6897.2.a.a 1
12.b even 2 1 2736.2.a.s 1
13.b even 2 1 9633.2.a.h 1
15.d odd 2 1 4275.2.a.m 1
19.b odd 2 1 1083.2.a.a 1
21.c even 2 1 8379.2.a.e 1
57.d even 2 1 3249.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.2.a.c 1 1.a even 1 1 trivial
171.2.a.a 1 3.b odd 2 1
912.2.a.b 1 4.b odd 2 1
1083.2.a.a 1 19.b odd 2 1
1425.2.a.a 1 5.b even 2 1
1425.2.c.g 2 5.c odd 4 2
2736.2.a.s 1 12.b even 2 1
2793.2.a.i 1 7.b odd 2 1
3249.2.a.g 1 57.d even 2 1
3648.2.a.o 1 8.b even 2 1
3648.2.a.bf 1 8.d odd 2 1
4275.2.a.m 1 15.d odd 2 1
6897.2.a.a 1 11.b odd 2 1
8379.2.a.e 1 21.c even 2 1
9633.2.a.h 1 13.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(57))$$:

 $$T_{2} - 1$$ T2 - 1 $$T_{5} + 2$$ T5 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T - 1$$
$5$ $$T + 2$$
$7$ $$T$$
$11$ $$T$$
$13$ $$T - 6$$
$17$ $$T + 6$$
$19$ $$T + 1$$
$23$ $$T - 4$$
$29$ $$T - 2$$
$31$ $$T - 8$$
$37$ $$T + 10$$
$41$ $$T + 2$$
$43$ $$T + 4$$
$47$ $$T - 12$$
$53$ $$T + 6$$
$59$ $$T + 12$$
$61$ $$T + 2$$
$67$ $$T + 4$$
$71$ $$T$$
$73$ $$T - 10$$
$79$ $$T$$
$83$ $$T - 16$$
$89$ $$T + 2$$
$97$ $$T - 10$$