Show commands for:
SageMath
sage: E = EllipticCurve("21.a1")
sage: E.isogeny_class()
Elliptic curves in class 21a
sage: E.isogeny_class().curves
| LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
|---|---|---|---|---|---|
| 21.a5 | 21a1 | [1, 0, 0, -4, -1] | [2, 4] | 1 | \(\Gamma_0(N)\)-optimal |
| 21.a2 | 21a2 | [1, 0, 0, -49, -136] | [2, 2] | 2 | |
| 21.a3 | 21a3 | [1, 0, 0, -39, 90] | [8] | 2 | |
| 21.a6 | 21a4 | [1, 0, 0, 1, 0] | [4] | 2 | |
| 21.a1 | 21a5 | [1, 0, 0, -784, -8515] | [2] | 4 | |
| 21.a4 | 21a6 | [1, 0, 0, -34, -217] | [2] | 4 |
Rank
sage: E.rank()
The elliptic curves in class 21a have rank \(0\).
Modular form 21.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 2 & 2 & 4 & 4 \\ 2 & 1 & 4 & 4 & 2 & 2 \\ 2 & 4 & 1 & 4 & 8 & 8 \\ 2 & 4 & 4 & 1 & 8 & 8 \\ 4 & 2 & 8 & 8 & 1 & 4 \\ 4 & 2 & 8 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.