Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 45a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
45.a7 | 45a1 | \([1, -1, 0, 0, -5]\) | \(-1/15\) | \(-10935\) | \([2]\) | \(2\) | \(-0.54612\) | \(\Gamma_0(N)\)-optimal |
45.a6 | 45a2 | \([1, -1, 0, -45, -104]\) | \(13997521/225\) | \(164025\) | \([2, 2]\) | \(4\) | \(-0.19954\) | |
45.a4 | 45a3 | \([1, -1, 0, -720, -7259]\) | \(56667352321/15\) | \(10935\) | \([2]\) | \(8\) | \(0.14703\) | |
45.a5 | 45a4 | \([1, -1, 0, -90, 175]\) | \(111284641/50625\) | \(36905625\) | \([2, 2]\) | \(8\) | \(0.14703\) | |
45.a2 | 45a5 | \([1, -1, 0, -1215, 16600]\) | \(272223782641/164025\) | \(119574225\) | \([2, 2]\) | \(16\) | \(0.49360\) | |
45.a8 | 45a6 | \([1, -1, 0, 315, 1066]\) | \(4733169839/3515625\) | \(-2562890625\) | \([2]\) | \(16\) | \(0.49360\) | |
45.a1 | 45a7 | \([1, -1, 0, -19440, 1048135]\) | \(1114544804970241/405\) | \(295245\) | \([2]\) | \(32\) | \(0.84018\) | |
45.a3 | 45a8 | \([1, -1, 0, -990, 22765]\) | \(-147281603041/215233605\) | \(-156905298045\) | \([2]\) | \(32\) | \(0.84018\) |
Rank
sage: E.rank()
The elliptic curves in class 45a have rank \(0\).
Complex multiplication
The elliptic curves in class 45a do not have complex multiplication.Modular form 45.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 2 & 2 \\ 8 & 4 & 8 & 2 & 4 & 1 & 8 & 8 \\ 16 & 8 & 16 & 4 & 2 & 8 & 1 & 4 \\ 16 & 8 & 16 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.